

1. Montage expérimental

1.1. Principe du montage

Le schéma de principe du montage est schématisé ci-contre.

On accroche au capteur de force une ficelle de longueur 1, à laquelle est suspendue une masse m, que l'on écarte d'un angle θ par rapport à la verticale.

La masse est lâchée et l'on étudie la période des battements du pendule.

1.2. Étalonnage du capteur force

- Fixer le capteur force à une table à l'aide de sa vis de serrage.
- Valider la première boite de dialogue qui apparaître au lancement du logiciel LATIS PLP une fois le capteur force branché.
- Valider la 1^{re} phase de l'étalonnage : le capteur de force est étalonné à vide). Attendre 20 s.
- Accrocher le fil de longueur $\mathbf{1} = 40$ cm et une masse m = 100 g au capteur (comme indiqué sur le montage). Saisir la valeur 2 N et valider la 2^{e} phase de l'étalonnage. Attendre 20 s.

1.3. Paramétrages d'acquisition

Paramétrer le logiciel en choisissant une acquisition « temporelle » comme indiqué ci-contre.

E	A1		Force
E	A2		CPT2
E	A3		CPT3
1		CPT4	
Ajou	ter les	courbes	
cquisitio	n		
Pa	is à pa	is 🖊	XY
Ter	nporell	e	Périodique
Aut TRI	IO MS		-20.65
clench	ement		
ource	ource Force (CPT1)		
ens	Mon	itant	
		1.	

Appel n°1 : Faire vérifier le montage et les paramétrages

2. Etude de l'influence de l'angle

1.a. Écarter le pendule de la verticale d'un angle $\theta = 20^{\circ}$; lâcher et lancer l'acquisition.

b. Utiliser l'outil « réticule » pour déterminer la période des oscillations (arrondir à 0,01 s) :

 $T_1 \approx \dots$ s

Appel n°2 : Faire vérifier le résultat

2.a. Écarter le pendule de la verticale d'un angle θ = 15 °; lâcher et lancer l'acquisition.
b. Utiliser l'outil « réticule » pour déterminer la période du battement (arrondir à 0,01 s):

 $T_2 \approx \dots$ s

3.a. Écarter le pendule de la verticale d'un angle $\theta = 10^{\circ}$; lâcher et lancer l'acquisition.

b. Utiliser l'outil « réticule » pour déterminer la période du battement (arrondir à 0,01 s) :

 $T_3 \approx \dots s$

4. Conclure : Pour de petits angles ($< 20^{\circ}$) on peut considérer que la période des oscillations

fonction de l'angle initial d'écartement du pendule.

Appel n°3 : Faire vérifier les résultats

5. Par un clic droit dans la fenêtre n°1, on choisira « Retirer toutes les courbes ».

3. Etude de l'influence de la masse

- *1.a.* Dans la zone de paramétrage de l'acquisition du logiciel, modifier le seuil de déclenchement à <u>0,5 N</u>.
 - **b.** Écarter le pendule de la verticale d'un angle $\theta = 20^{\circ}$ avec une masse m = 50 g; lâcher et lancer l'acquisition.
 - *c*. Utiliser l'outil « réticule » pour déterminer la période des oscillations (arrondir à 0,01 s) :

 $T_4 \approx \dots s$

Appel n°4 : Faire vérifier le résultat

Source	Force (CPT1) Montant		•
Sens			
Seuil	0.5	N	

diminue

□ ne varie pas en □ augmente

- **2.a.** Dans la zone de paramétrage de l'acquisition du logiciel, modifier le seuil de déclenchement à **1 N**.
 - **b.** Écarter le pendule de la verticale d'un angle $\theta = 20^{\circ}$ avec une masse m = 100 g; lâcher et lancer l'acquisition.
 - *c*. Utiliser l'outil « réticule » pour déterminer la période des oscillations (arrondir à 0,01 s) :

 $T_5 \approx \dots$ s

- **3.a.** Dans la zone de paramétrage de l'acquisition du logiciel, modifier le seuil de déclenchement à <u>2 N</u>.
 - **b.** Écarter le pendule de la verticale d'un angle $\theta = 20^{\circ}$ avec une masse m = 2000 g; lâcher et lancer l'acquisition.
 - *c*. Utiliser l'outil « réticule » pour déterminer la période des oscillations (arrondir à 0,01 s) :

 $T_6 \approx \dots$ s

4. Conclure : Pour de petits angles ($< 20^{\circ}$) on peut considérer que la période des oscillations

fonction de la masse accroché au pendule.

Appel n°5 : Faire vérifier les résultats

5. Par un clic droit dans la fenêtre n°1, on choisira « Retirer toutes les courbes ».

4. Etude de l'influence de la longueur du fil

- *1.a.* Constituer un pendule avec le fil de longueur 1 = 20 cm et une masse de 200 g.
 - Écarter le pendule de la verticale d'un angle $\theta = 20^{\circ}$; lâcher et lancer l'acquisition.
 - **b.** Utiliser l'outil « réticule » pour déterminer la période des oscillations (arrondir à 0,01 s) :

 $T_7 \approx \dots s$

- **2.a.** Constituer un pendule avec le fil de longueur 1 = 30 cm et une masse de 200 g. Écarter le pendule de la verticale d'un angle $\theta = 20^\circ$; lâcher et lancer l'acquisition.
 - **b.** Utiliser l'outil « réticule » pour déterminer la période des oscillations (arrondir à 0,01 s) :

 $T_8 \approx \dots s$

- **3.a.** Constituer un pendule avec le fil de longueur 1 = 40 cm et une masse de 200 g.
 - Écarter le pendule de la verticale d'un angle $\theta = 20^{\circ}$; lâcher et lancer l'acquisition.
 - **b.** Utiliser l'outil « réticule » pour déterminer la période des oscillations (arrondir à 0,01 s) :

 $T_9 \approx \dots s$

4. Conclure : Pour de petits angles (< 20°) on peut considérer que la période des oscillations $\begin{cases} \Box & varie \\ \Box & ne varie pas \end{cases}$ en fonction de la longueur du fil du pendule.

Plus la longueur du fil est grande, plus la période des oscillations est $\begin{bmatrix} \Box & \text{petite} \\ \Box & \text{grande} \end{bmatrix}$

Appel n°6 : Faire vérifier les résultats

5. Par un clic droit dans la fenêtre n°1, on choisira « Retirer toutes les courbes ».

Déclenche	ement		~
Source	Force (•	
Sens	Montant		
Seuil	1	N	
Déclench	ement		^
Source	Force	CPT1)	

Source	Force (CPT1)		-
Sens	Montant		
Seuil	2	N	

diminue
ne varie pas en
augmente

5. Période propre

1. Compléter suivant (on prendra g = 10 N/kg)

1	20 cm	30 cm	40 cm
<i>T</i> en s (arrondi à 0,01 s)	$T_7 \approx \dots$ s	$T_8 pprox$ s	<i>T</i> ₉ ≈s
<i>L</i> (en m)			
(longueur 1 du fil +			
longueur de la masse)			
$2\pi\sqrt{\frac{L}{g}}$			
(résultat arrondi à 0,01)			

2. Conclure :

.....

6. Compte rendu

- 1. À l'aide du logiciel LATIS PLP, grâce au menu « Fenêtre », faire afficher deux fenêtres supplémentaires.
- 2. Utiliser dans le menu « Fenêtre » l'option « Mosaïque » pour disposer les 3 fenêtres horizontalement les unes sous les autres.
- 3. Dans la fenêtre n°1 afficher les courbes Force {1}, Force {2} et Force {3}. Créer un commentaire.
- 4. Dans la fenêtre n°2 afficher les courbes Force {4}, Force {5} et Force {6}. Créer un commentaire.
- 5. Dans la fenêtre n°3 afficher les courbes Force {7}, Force {8} et Force {9}. Créer un commentaire.

Appel n°7 : Faire vérifier les résultats et le rangement du matériel