

**But des manipulations** : Etudier l'amplification du signal de sortie d'un micro réalisé à l'intérieur d'un capteur son pour être exploitable par un système d'acquisition ExAO.

# 1. Visualisation d'un signal de sortie d'un microphone

### 1.1. A l'aide d'un oscilloscope

1. Réaliser le montage expérimental schématisé ci-dessous ; placer le microphone à quelques centimètres du hautparleur.



2. Régler le générateur basse fréquence (GBF) :



- 3. Fermer l'interrupteur et régler l'oscilloscope pour que l'oscillogramme corresponde à deux périodes au plus et occupe au maximum l'écran.
- 4. Mesurer la tension maximale du signal visualisée sur l'oscilloscope.

Sensibilité verticale : ...... V/div

```
Tension maximale : U_{\rm m} = ...... V
```



### Appel n°1 : Faire vérifier les résultats

### 1.2. A l'aide d'un système d'acquisition ExAO

1. Dans le montage précédent, remplacer l'oscilloscope par le système d'acquisition ExAO.



Il nous faut donc **amplifier** le signal de sortie du micro pour pouvoir le visualiser avec le système d'acquisition.

# 2. Amplification du signal de sortie d'un microphone

1. Dans le montage précédent, intercaler le montage électrique suivant entre le microphone et le système d'acquisition.



2. A partir du logiciel LATIS PLP, sélectionner le mode « Ajouter les courbes ».



Appel n°3 : Faire vérifier le montage et les paramétrages

- 3. Fermer l'interrupteur et lancer l'acquisition.
- 4. Renommer la nouvelle courbe obtenue en Son micro amplifié.
- 5. Utiliser l'outil « Calibrage » pour visualiser la courbe sur l'ensemble de la feuille de travail.
- 6. À l'aide de l'outil « Réticule », déterminer graphiquement la valeur de la tension maximale  $U_{\text{m amplifie}}$  du signal visualisé :

 $U_{\rm m}$  amplifie = ...... V

### Appel n°4 : Faire vérifier les mesures

7. Calculer le rapport d'amplification A du signal : A =  $\frac{U_{\text{m amplifie}}}{U_{\text{m}}}$  = .....

8. Calculer le rapport  $\frac{R_1 + R_2}{R_1}$ : 9. Comparer  $\frac{U_{\text{m amplifie}}}{U_{\text{m}}}$  et  $\frac{R_1 + R_2}{R_1}$ : .....

# 3. Utilisation d'un capteur son

1. Réaliser le montage expérimental schématisé ci-dessous.



- 2. A partir du logiciel LATIS PLP, désactiver le voltmètre EA1 (le capteur son est reconnu automatiquement).
- 3. Fermer l'interrupteur et lancer l'acquisition.
- 4. De quoi est constitué le capteur son ?

### Appel n°5 : Faire vérifier les mesures et le rangement du matériel

| EA1 | CPT1 |
|-----|------|
| EA2 | CPT2 |
| EA3 | CPT3 |
| T   | CPT4 |